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Oscillations in confined gases

O. L. de Lange and J. Pierrus
Department of Physics, University of Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa

~Received 23 December 1997!

We have used an electronic technique@J. Pierrus and O. L. de Lange, Phys. Rev. E56, 2841 ~1997!# to
monitor damped oscillations in Ru¨chardt’s experiment for twelve gases~He, Ne, Ar, Kr, Xe, N2, CO2, N2O,
CHF3, CCl2F2, SF6, and C2ClF5! at room temperature and pressure. The nature of the oscillations depends on
frequency~volume of gas! and amplitude. The bulk modulusK and relaxation timet are measured over a
range of volumes of gas~0.12–23 l: frequencies;8–0.5 Hz! and amplitudes~6–0.01 cm!. In gases for which
Cp /Cv is not too low, there is evidence for an initial, transient adiabatic oscillation lasting one or two cycles.
This is followed by a set of intermediate oscillations, which is observed for all gases, and can be studied in
detail. For these oscillations, the agreement between experiment and theory is good. In particular, gases such
as He and Ne exhibit high damping, whereas gases such as SF6 and C2ClF5 have low damping, as predicted by
theory. The intermediate oscillations are followed~as the amplitude decreases! by a second set of oscillations
of constant, longer period. For the monatomic and diatomic gases the values ofK andt for these oscillations
are consistent with isothermal oscillations, although the measurements oft indicate the presence of residual
thermal gradients at the higher frequencies~smaller volumes!. For the polyatomic gases, measurements oft
yield a similar conclusion; however, values ofK are lower than theoretical values for isothermal oscillations,
and the disparity increases with the polyatomicity of the gas. In all gases, the amplitudes of oscillations in the
isothermal tail increase as the frequency is decreased.@S1063-651X~98!06305-3#

PACS number~s!: 51.30.1i, 51.40.1p, 44.10.1i, 05.60.1w
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I. INTRODUCTION

Recently we described a sensitive electronic technique
studying oscillations in confined gases@1#. Our method is
based on Ru¨chardt’s well-known experiment for measurin
the ratio of specific heatsg5Cp /Cv of a gas@2#. This ex-
periment uses a glass aspirator with a stopper through w
passes a vertical, precision-made glass tube. A closely fitt
smooth steel ball is placed in the tube. If the ball is displac
from its equilibrium position and released, it performs
damped harmonic motion. By measuring the period of t
motion ~as the average of a number of cycles! and assuming
that the oscillations of the gas are adiabatic, a value ofg can
be obtained@2,3#.

In our work we employed two modifications to this e
periment. First, we used a linear voltage-displacement tra
ducer to measure the displacement of the ballx(t) very ac-
curately. From the trace ofx(t) versust we can accurately
monitor the periodT of each cycle. This period depends o
the bulk modulus of the gasK according to

T5S 4p2mV

KA2 D 1/2

, ~1!

wherem is the mass of the ball,V is the equilibrium volume
of the gas, andA is the cross-sectional area of the tube@1#.
Thus measurements ofT for successive cycles enable one
study whether the bulk modulus of the gas is changing as
amplitude decreases due to damping. Also, using the s
trace, one can obtain the relaxation timet of the damped
oscillations. The measurements ofK and t enable one to
monitor the nature of the oscillations~whether they are adia
batic, isothermal, or intermediate between these extrem!
@1#.
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The second modification@3# was to vary the volume of
gasV by partially filling the aspirator with a suitable liquid
~such as water or vacuum pump oil!: this allows one to vary
the frequency of the oscillations@see Eq.~1!#. Thus the gas
we study is the ullage of the aspirator, and the equilibriu
pressure of the gas is its partial pressureP in the aspirator.
These two modifications enable us to monitor the oscillatio
of the gas as a function of the volume of gas~i.e., the fre-
quency! and the amplitude of the oscillation. In our expe
ments, the volume of the gas was varied from about 0.12
about 23 l~the nominal volume of the aspirator is 20 l!; the
amplitude varied from about 6 cm down to about 0.01 cm

One expects such measurements would show that the
cillations are not strictly adiabatic: clearly, due to the fin
thermal conductivities of the gas and the glass walls, th
must be heat flows out of and into the gas during the co
pression and expansion parts of the oscillations@4#. These
will alter the temperature profile from that of an adiaba
oscillation, and we refer to such oscillations as intermedi
between the adiabatic and isothermal extremes. In Ref.@1#
we presented a detailed model of this behavior and sho
that the bulk modulus and relaxation time are given by

Km5S 12
3~g21!a

2gR DKa ~2!

and @5#

1

tm
5

1

t0
1DT27/6, ~3!

where
5520 © 1998 The American Physical Society
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57 5521OSCILLATIONS IN CONFINED GASES
a5~gkT/p!1/2, ~4!

D512~g21!S p3k

g5/3D 1/2S 2m

3PA2D 1/3

. ~5!

Here we have assumed, for convenience, a spherical as
tor of radiusR and volumeV5 4

3 pR3. We have also as
sumed that the thermal conductivity of the glass walls
much larger than that of the gas. In the above,Ka is the bulk
modulus for adiabatic oscillations of the gas: it is given b

Ka5gPZ ~6!

with

Z511
B~T!

V̄
~7!

the usual compressibility factor~V̄ is the molar volume! @6#.
k is the thermal diffusivity of the gas~5l/rCp wherel is
the thermal conductivity andr the density!. In Eq. ~3!, the
first term on the right-hand-side is associated with fricti
due to motion of the ball in the tube, and it is independen
the periodT ~see Sec. V and Appendix B!; the second term
which does depend onT, is due to dissipation associate
with heat flows in the oscillating gas.

In Ref. @1# we reported measurements ofT andt as func-
tions of volume and amplitude for~synthetic! air at room
temperature and pressure. The results showed unexpe
features. One expects that, for a given volume of gas,
trace ofx(t) would yield values ofT that are constant~apart
from experimental scatter!. However, the plots ofx(t) con-
sisted of an initial set of cycles all with very nearly the sam
period, followed by a second set of cycles with a long
nearly constant, period. The change in period between th
two sets was accomplished quite rapidly, in just two or th
cycles. Thus a plot ofT versusN ~the number of the cycle!
consists of two ‘‘plateaus.’’ The first plateau, with th
smallerT, yields a bulk modulus that agrees reasonably w
with the intermediate value Eq.~2!. Also, the relaxation time
t of these cycles is in reasonable agreement with Eq.~3!. The
second plateau, with the longerT, yields a bulk modulus in
good agreement with the isothermal value

Ki5PZ. ~8!

The relaxation time of these oscillations is longer thantm ~as
one would expect for isothermal oscillations!, but it was not
possible to obtain reliable values because of the small am
tudes of the oscillations studied. The plot ofT versusN
showed a further feature, namely, an initial ‘‘lip’’ consistin
of the first one or two cycles with a period slightly lowe
than that of the first plateau: these gave a bulk modulus c
to the adiabatic value Eq.~6!. ~We remark that for air the
resolution of this ‘‘lip’’ is near the limit of our experimenta
accuracy in the measurement ofT.! For the smallest volume
of gas~the highest frequencies! we were unable to detect th
ra-
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second plateau before the amplitude decreased so much
the signal became distorted by noise, or the motion h
ceased@1#.

These results, showing that for a given volume of air t
oscillations undergo several changes as their amplitude
creases due to damping, suggested the following interpr
tion: A transient, adiabatic oscillation is followed by sever
intermediate oscillations until, after the amplitude decrea
sufficiently, there is a transition~lasting two or three cycles!
to isothermal oscillations which persist until the motio
ceases@1#.

Because of the unexpected and incomplete nature of s
of these results, and because they were obtained for just
gas, we have undertaken a further, more detailed, study.
study was motivated by the following questions:

~i! Are similar results found in other gases, in particul
the monatomic and polyatomic gases?

~ii ! Can the sensitivity of the measurements be improv
sufficiently to obtain accurate values of the relaxation time
the ‘‘isothermal tail’’ of the trace ofx(t) versust? Such
values are of interest because the relaxation time is m
sensitive to the presence of thermal gradients in the osci
ing gas than is the bulk modulus~see Ref.@1# and Secs. IV
and V!.

~iii ! Equations~3! and ~5! for the relaxation time enable
one to make certain predictions regarding the damping
intermediate oscillations in various gases~for given values of
the experimental parametersm, P, andA!. In particular, at
small volumes, the second term on the right-hand side of
~3! is larger than the first term~see Secs. IV and V!: Then,
for example, a gas with a large thermal diffusivityk, and a
value ofg not too close to unity, should have large dampi
compared with a gas with a value ofg close to unity, and a
k that is not too large@see Eqs.~3! and~5!#. Thus from tables
of k andg ~see Appendix A!, one can select gases which a
in the ‘‘high damping’’ or ‘‘low damping’’ limits.

In the work reported here we have studied twelve gas
five monatomic gases~He, Ne, Ar, Kr, Xe!, a diatomic gas
(N2), and six polyatomic gases~CO2, N2O, CHF3, CCl2F2,
C2ClF5, and SF6! at room temperature and pressure.~The
purity of these gases was in excess of 99.9%.! In Sec. II we
give a brief discussion of our experimental procedure a
present some representative traces ofx(t) for three gases,
which exemplify the cases of low, medium, and high dam
ing. Detailed results obtained from an analysis of appro
mately 700 traces measured for the above twelve gases
presented in Sec. III~the bulk moduli! and in Sec. IV~the
relaxation times!. These results are compared with theo
and discussed in Section V.

II. EXPERIMENTAL PROCEDURE AND RESULTS

The apparatus was the same as that in Ref.@1# apart from
two modifications:~1! Contamination of the gas in the asp
rator by any exchange with air past the oscillating ball w
prevented by inverting a glass cup over the open end of
tube, and continuously flushing this cup with the gas be
used.~2! A pulsed magnetic field was used to induce t
oscillation of the ball by discharging a capacitor through
coil mounted coaxially with the tube and located at the eq
librium position of the ball. The magnitude of the displac
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5522 57O. L. de LANGE AND J. PIERRUS
ment was controlled by adjusting the voltage applied to
capacitor.

The main obstacle to obtaining good traces at small a
plitudes is mechanical noise associated with the motion
the ball in the tube. To reduce this noise it is essential t
the ball and tube be clean, and that they contain no scrat
or rough patches. Even then, the quality of traces at sm
amplitudes tends to be unsatisfactory for accurate meas
ments. The cause of this difficulty was found to be the fil
liquid ~water or vacuum pump oil! in the aspirator: after a
time, small amounts of this liquid condense on the surface
the ball and the inside of the tube. When using vacuum pu
oil, this condensation required that the apparatus be di
sembled and cleaned. Because recontamination could o
relatively quickly, we abandoned the use of oil as a filler

In the case of water, the ball and the tube can be dr
without disassembling the apparatus, by gently heating
tube with a hot-air blower along a length of about 5 cm
either side of the equilibrium position of the ball for a fe
minutes, and then allowing the tube to cool to room tempe
ture before resuming measurements. This simple techn
usually allows one to complete a run, lasting 10 h or mo
on a given gas and to obtain good quality traces even
small oscillations~see below!. The results reported here we
obtained using water as a filler.

For each gas, we adopted the following procedure. T
aspirator was filled up to the stopper with distilled wat
Then a carefully measured volume of water was tapped
and the aspirator and tube were flushed with the gas b
used. After the flushing was complete, the ball was give
displacement of about 6 cm and the desired traces were
corded on anxy plotter ~see Ref.@1#!. Then the volume of
gas was increased by tapping out more water and the a
process repeated. The smallest volume for which a relia
trace could be obtained was about 0.12 l.

In practice, it was convenient to use two sets of volu
increments for each gas. The reason is that for determin
the bulk moduli one uses Eq.~1! and a widely spaced set o
volumes~about 20! between 0.12 and 22.94 l is suitable~see
Sec. III!. However, for the relaxation times one wishes to t
Eq. ~3!, and an appropriately spaced set of traces~again
about 20! for volumes between 0.12 and about 7 l is more
suitable~see Sec. IV!. Also, many of the traces had to b
measured twice: once for the initial oscillations and a s
ond, amplified trace for the ‘‘tail’’ of the oscillations. I
turned out that about 60 traces were recorded for each
The method for measuring the period of each cycle was
same as that in Ref.@1#. The trace ofx(t) was captured on a
digital oscilloscope and, using the ‘‘x-enlargement’’ feature
of the oscilloscope, accurate values for the periods were
tained. See Ref.@1# for more details.

We present some typical traces for various volumes
three gases~N2, He, and CCl2F2! in Figs. 1 and 2. These
gases have been chosen because they cover a wide ran
damping and the traces give a good indication of the var
of behavior observed in our experiments. We mention so
general features:

~i! Plots of the periodT versus the number of the cycleN
obtained from traces such as those in Figs. 1 and 2 are sh
in Figs. 3–5. These plots confirm the results found pre
ously for air@1#, namely, a single plateau at the smaller v
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umes of gas and two plateaus at the larger volumes.
second plateau is associated with the oscillations in the
of the trace: the onset of these plateaus is indicated by arr
in Figs. 2~a!, 2~b!, and 2~c!.

~ii ! The amplitudes in the tail increase as the volume
increased~see Sec. V!. Consequently, for a given initial dis
placement, the number of cycles in the first plateau decre

FIG. 1. ~a! Oscilloscope trace for the positionx of the steel ball
vs t, for a volumeV50.20 l of N2. The first 15 cycles are shown
~b! As in ~a! but for a volumeV50.50 l of He. The jitter at the end
of the trace is due to noise inherent in ourxy recorder.~c! As in ~a!
but for a volumeV50.175 l of CCl2F2. Note the slight beatlike
property of the oscillations.
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FIG. 2. ~a! ~i! As in Fig. 1~a! but for a volumeV50.90 l of N2. The first 14 cycles are shown.~ii ! An amplified tail, showing cycles
12–23. The arrow indicates the first peak in the tail.~b! ~i! As in Fig. 1~a! but for a volumeV516.27 l of He. The first 13 cycles are show
~ii ! An amplified tail, showing cycles 8–18. The arrow indicates the first peak in the tail.~c! As in Fig. 1~a! but for a volumeV511.24 l of
CCl2F2. The arrow indicates the first peak in the tail.
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as the volume increases~Figs. 3–5!: at larger volumes the
tail starts almost at the beginning of the trace.

~iii ! For a given volume of gas, the number of cycles
the first plateau depends on the initial displacement;
number of cycles in the second plateau does not. The am
tude at the start of the second plateau does not depend o
initial amplitude.

~iv! At the smaller volumes, the damping of the first s
of oscillations with constant period~those in the first plateau!
e
li-
the

t

varies strongly with the type of gas@compare Figs. 1~a!, 1~b!,
and 1~c!#. For these oscillations, He has large dampin
CCl2F2 has low damping, and N2 is intermediate between th
two ~see Sec. IV!.

~v! The damping in the tails of the oscillations is less th
that of the initial oscillations, particularly for the larger vo
umes of gas~see Fig. 2 and Sec. IV!. Also, at large volumes
the gases have about the same damping in the tails~Sec. IV!.

A detailed analysis and interpretation of the results o
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5524 57O. L. de LANGE AND J. PIERRUS
tained from approximately 700 traces is given in the follo
ing sections.

III. BULK MODULI

The bulk moduli are determined from the measured p
ods using the procedure of Ref.@1#: Equation~1! is rewritten
in terms of the volume of water in the aspiratorVw5V0
2V whereV0 is the volume of the empty aspirator plus th
volume of the tube up to the equilibrium position of the ba!
as

T25
4p2m

KA2 ~V02Vw!. ~9!

FIG. 3. The measured periodT of a cycle vs the numberN of
that cycle for various volumes of N2. The data were obtained from
traces such as those in Figs. 1 and 2, as described in the text
arrows indicate the first cycle in the tail. The manner in which
periodsTa , Tm , andTi are obtained is shown.

FIG. 4. As in Fig. 3 but for He.
-

i-

According to Eq.~9!, for oscillations of a given type, a plo
of T2 versus Vw should yield a straight line with slope
24p2m/KA2 and interceptV0 . In this section we presen
our experimental results for the bulk moduli, together w
theoretical values for adiabatic, intermediate, and isother
oscillations. The results are discussed in Sec. V.

A. Monatomic gases

Plots of T2 versusVw for He are shown in Fig. 6. The
straight lines are obtained from least-mean-squares fits to
data. The points labeledTa

2 are from the measured periods
the initial one~or two! cycles of the traces, such as the valu
Ta in Fig. 4. The points labeledTm

2 are from the periods of
the first plateau, such as the valuesTm in Fig. 4. The points
labeledTi

2 are from the periods of the second plateau, su
as the valuesTi in Fig. 4. We remark that in He values ofTm

he

FIG. 5. As in Fig. 3 but for CCl2F2.

FIG. 6. The squares of the periodsTa , Tm , andTi vs the vol-
ume of water in the aspirator, for He. The values ofTa , Tm , andTi

were obtained from plots such as Fig. 4. The straight lines
least-mean-squares fits to the data, and the intercepts and slop
given in Table I.
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TABLE I. Values of the intercepts and slopes for five monatomic gases obtained from least mean-s
fits such as those in Fig. 6. Values of the equilibrium temperature and pressure of each gas are also

Gas t ~C! P ~Pa! V0a ~l! V0m ~l! V0i ~l!

dTa
2

dVw
~s2 l21!

dTm
2

dVw
~s2 l21!

dTi
2

dVw
~s2 l21!

He 21 95 660 23.04 23.36 23.00 20.1026 20.1060 20.1657
Ne 22 92 820 23.08 23.04 22.95 20.1066 20.1096 20.1656
Ar 18 93 400 22.92 22.90 22.70 20.1030 20.1060 20.1665
Kr 24 92 950 22.93 22.98 22.63 20.1058 20.1077 20.1622
Xe 23 92 320 23.00 22.96 22.98 20.1071 20.1087 20.1574
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could not be obtained for the larger volumes of gas (Vw
&6 l) because the initial plateau cannot be discerned at th
volumes. Also, for smaller volumes of gas (Vw*21 l) the
difference betweenTa andTm could not be resolved in ou
measurements~see Fig. 4!. Values of the intercepts an
slopes obtained from Fig. 6 are given in Table I. The valu
of V0 obtained from the respective intercepts are all close
the measured valueV0522.94 l. In Table II we present val
ues of the bulk moduli divided by the equilibrium pressu
K/P deduced from the measured slopesdT2/dVw with the
aid of Eq. ~9! and usingm516.531023 kg and A52.011
31024 m2.

The theoretical values of the bulk moduli in Table II we
obtained from Eqs.~2! and ~6!–~8! using the parameter
listed in Appendix A. Note that we have neglected the eff
of water vapor in the gas on the value ofg because this effec
is small @1#, and that we have rounded off all values of t
bulk moduli to 3 significant figures. In calculating the rat
a/R in Eq. ~2! we use Eq.~1!, with V5 4

3 pR3, in Eq. ~4! to
write

a

R
5S gk

p D 1/2S 16p3m

3gPA2D 1/3

T21/6. ~10!

The factorT21/6 in Eq. ~10! is within 12% of 1 s21/6 for the
values ofT for which we measure a difference betweenTa
andTm ~i.e., for 2 s*T*0.5 s!: in the calculations ofKm /P
in Table II we have set this factor equal to unity. Resu
obtained in a similar manner for four other monatomic ga
are also given in Tables I and II.

TABLE II. Experimental values of the bulk moduli for five
monatomic gases obtained from Eq.~9! using the data in Table I
The theoretical values are obtained from Eqs.~2!, ~6!, ~7!, and~8!
as described in the text.

Gas

Ka /P Km /P Ki /P

Expt. Theory Expt. Theory Expt. Theory

He 1.64 1.63 1.59 1.56 1.02 1.00
Ne 1.63 1.64 1.58 1.60 1.05 1.00
Ar 1.67 1.67 1.63 1.64 1.04 1.00
Kr 1.64 1.67 1.61 1.65 1.07 1.00
Xe 1.63 1.65 1.61 1.63 1.10 1.00
se

s
o

t

s
s

B. Nitrogen

Plots of Ta
2, Tm

2 , andTi
2 versusVw for N2 are shown in

Fig. 7, and the results obtained from these are given
Tables III and IV. In the latter table, theoretical values of t
bulk moduli are also presented.

C. Polyatomic gases

Our measurements on polyatomic gases yield unexpe
values for the bulk moduliKi of the oscillations in the tail of
x(t). As a result, we decided to make a detailed study
several gases of increasing polyatomicity. To illustrate
measurements, we present in Figs. 8 and 9 plots ofT2 versus
Vw for two gases, CO2 and C2ClF5. A noteworthy feature of
the plots ofTi

2 versusVw in these figures is the unexpected
large values of the periods, which results in smaller th
expected values of the bulk moduliKi : This feature is
present in all the polyatomic gases we have studied~see
Table VI and Sec. V!. The results of our measurements o
six polyatomic gases are presented in Tables V and VI,
theoretical values of the bulk moduli are included in Tab
VI. We remark that for the four most polyatomic gas
~CHF3, CCl2F2, SF6, and C2ClF5! we were unable to distin-
guish any difference in the period of the initial oscillation
Ta and that of the first plateauTm . For this reason, value
corresponding toTa are not given in Fig. 9 or in Tables V
and VI. We note that the effect of molecular interactions
the bulk moduliKa , Km , andKi has been included in the

FIG. 7. As in Fig. 6 but for N2. The intercepts and slopes ar
given in Table III.
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TABLE III. As in Table I, but for N2.

Gas t ~C! P ~Pa! V0a ~l! V0m ~l! V0i ~l!

dTa
2

dVw
~s2 l21!

dTm
2

dVw
~s2 l21!

dTi
2

dVw
~s2 l21!

N2 24 92 300 22.90 22.95 22.97 20.1258 20.1290 20.1751
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theoretical values in Tables II, IV, and VI by means of t
compressibility factorZ in Eqs.~6! and ~8!. Numerical val-
ues of this factor for our gases are listed in Appendix A:
effect of interactions under the conditions of our experim
is usually small, but it can reduce the bulk modulus by ab
3% in the polyatomic gases~Appendix A!.

IV. RELAXATION TIMES

The relaxation times are determined from the ratio of s
cessive peak-to-peak displacementsxn /xn11 and the mea-
sured periodsT, using the relation

t5
T

lnxn /xn11
~11!

for a damped oscillator. In this section we present results
~i! the relaxation timestm of the intermediate oscillation
~those with periodTm , see Sec. II! and ~ii ! the relaxation
times t i of the oscillations in the tail ofx(t) ~those with
periodTi , see Sec. II!.

A. The relaxation times tm

For each volume of a given gas, the value oftm was
obtained as an average of the values given by Eq.~11! for all
the cycles with periodTm . The maximum variation of the
values oftm from the mean was about 20%. This variation
associated with a slight beatlike property of the traces
x(t): see, for example, Fig. 1~c!. To compare the measure
values with Eq.~3!, we plot 1/tm versusTm

27/6. This is done
in Fig. 10 for the monatomic gases and in Fig. 11 for N2 and
the polyatomic gases. The straight lines in these figures
least-mean-squares fits to the data. From these straight
we obtain, for each gas, values of the slopeD and the inter-
cept 1/t0 listed in Table VII. Included in this table are theo
retical values ofD calculated from Eq.~5! and using the
parameters given in Appendix A. Note that the volumes
gas used in obtaining the data in Figs. 10 and 11 are s
~see Fig. 12!.

B. The relaxation times t i

For our purposes it is helpful to compare the values oftm

andt i by including the latter in a plot of 1/tm versusTm
27/6.

This is done in Fig. 12 for three gases He, N2, and N2O. All

TABLE IV. As in Table II, but for N2.

Gas

Ka /P Km /P Ki /P

Expt. Theory Expt. Theory Expt. Theor

N2 1.39 1.40 1.35 1.38 1.00 1.00
e
t
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the gases we studied yielded results similar to those in
12. Specifically, for a given volume of gas,t i is always
longer thantm . This is particularly the case as the volume
gas ~and hence the period of oscillation! is increased~see
Fig. 12!. Further discussion of these results is given in t
next section.

V. DISCUSSION

We summarize the picture that is suggested by our exp
ments:

~1! There is evidence for an initial, transient adiaba
part to the oscillations. This transient lasts for the first one
two cycles, which have a slightly lower period (Ta) than that
of the prolonged set of cycles with constant period (Tm) that
follow ~see, for example, the ‘‘lips’’ in Figs. 3 and 4!. From
the periodsTa we obtain bulk moduliKa that are in reason-
able agreement with theoretical values for adiabatic osc
tions ~see Tables II, IV, and VI, and Ref.@1#!. However, we
make two comments on this result:~i! We are unable to
support the conclusion by measuring also a relaxation t
ta , because there are too few adiabatic oscillations.~ii ! Mea-
surement of a difference betweenTa andTm is close to the
limit of our experimental accuracy for time measureme
and, in fact, in the polyatomic gases with lowg we are un-
able to measure such a difference~see Secs. II and IV!.

By contrast, the intermediate oscillations~those with pe-
riod Tm! can be studied in more detail and with greater a
curacy. Measurements of both the bulk moduliKm and the
relaxation timestm are in reasonable agreement with
model that takes into account the departure from adiabati
due to heat flows into and out of the gas~see Tables II, IV,
VI, and VII!. The effect on the bulk modulus is to lower i

FIG. 8. As in Fig. 6 but for CO2. The intercepts and slopes ar
given in Table V.
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57 5527OSCILLATIONS IN CONFINED GASES
typically by a few percent, or less. The effect on the rela
ation time can be more pronounced, particularly for t
smaller volumes of gas: if the contribution of thermal gra
ents to the dissipation were absent, the second term on
right-hand side of Eq.~3! would be zero, and plots such a
Figs. 10 and 11 would be horizontal lines drawn through
intercepts on the 1/t axis. The dependence of 1/t on T27/6 in
Eq. ~3! is in reasonable agreement with the measured va
in Figs. 10 and 11. The prediction that gases such as He
Ne are in the high damping limit, whereas polyatomic, lowg
gases such as SF6, CCl2F2, and C2ClF5 are in the low damp-
ing limit, is also borne out by experiment~see Table VII!.
We conclude that the identification and properties of the
termediate oscillations have good experimental supp
~With regard to the comparison of theoretical and expe
mental values of the slopesD in Table VII, we remind the
reader that the former are for a spherical aspirator whe
the shape of our aspirator, for the volumes used in obtain
the experimental values, is conical. The error introduced
this disparity is unknown.!

~3! Equations~3! and ~5! can be used to estimate th
damping of intermediate oscillations for other gases. For
ample, for H2 ~g51.40 and k515.431025 m2 s21! the
value of D is about 0.7 that for He, or approximate
0.37s1/6. Thus H2 should also exhibit large damping due
heat flows. It is interesting to ask which gas has the low
damping associated with heat flow. From the tabulated in

FIG. 9. As in Fig. 6 but for C2ClF5. The intercepts and slope
are given in Table V.
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mation available to us, this is C4F8 ~g51.057 andk50.15
31025 m2 s21!, for which D is about 2.2 times smaller tha
the value of the gas with lowest damping in our experime
~C2ClF5, see Table VII!. It would be interesting to check thi
prediction.

~4! Next, we discuss the oscillations in the tail ofx(t)
~the oscillations with periodTi that make up the second pla
teau in plots such as Figs. 3–5!. These we also studied in
detail, measuring both the corresponding bulk moduliKi and
the relaxation timest i . For the monatomic and diatomi
gases, the measured values ofKi are close to the values fo
isothermal oscillations, except for Kr and Xe where they a
a little high ~see Table II!. This indication of isothermal os
cillations is supported by measurements oft i : If the oscilla-
tions are isothermal, the damping should be mainly due
friction in the tube. That is,t't0 , the inverse of the first
term in Eq.~3!. The plots in Fig. 12, wheret i and tm are
compared, show that for the larger volumes of gas~V*1 l in
the case of N2! this is, in fact, so.~For the largest volumes o
gas, the values of 1/t i are actually as much as 50% below th
intercepts 1/t0 obtained from the plots of 1/tm : the reason
for this is not clear. Also, for the smaller volumes of gas, t
values of 1/t i in Fig. 12 lie above the intercepts, but st
below 1/tm : this suggests that at these volumes there is so
residual dissipation due to temperature gradients. It sho
be recalled that the values ofKi are obtained using volume
of gas that are mostly larger than 1 l: see Figs. 6–9.! We
conclude that for the monatomic and diatomic gases we h
studied, our measurements of the bulk moduli and relaxa
times indicate the presence of~approximately! isothermal os-
cillations in the tails ofx(t).

~5! For the six polyatomic gases we have studied,
results provide an unexpected twist. The measurementst i

still indicate the absence of a contribution from thermal g
dients at the larger volumes of gas@see Fig. 12~c! for N2O;
similar results are obtained for the other polyatomic gas#.
However, the values ofKi are all lower than the theoretica
values, and the disparity increases as the degree of poly
micity increases~see Table VI!. The reason for these differ
ences is not clear: they are not due to molecular interact
because~i! these are included in the theoretical values
Table VI and~ii ! the thermodynamic identity@7# Ka /Ki5g
would require the same effect on the values ofKa and Km
@which is proportional toKa in Eq. ~2!#, and this is not evi-
dent in our measurements ofKa and Km in Table VI. We
emphasize that the measured values ofKi in Table VI are
TABLE V. As in Table I, but for polyatomic gases.

Gas t ~C! P ~Pa! V0a ~l! V0m ~l! V0i ~l!

dTa
2

dVw
~s2 l21!

dTm
2

dVw
~s2 l21!

dTi
2

dVw
~s2 l21!

CO2 23 92 200 22.89 22.83 22.82 20.1336 20.1377 20.1896
N2O 25 92 030 22.94 22.98 22.84 20.1384 20.1408 20.1987
CHF3 23 92 050 22.94 22.96 20.1507 20.2063
CCl2F2 16 93 980 22.90 23.02 20.1566 20.2077
SF6 22 94 600 23.01 23.09 20.1600 20.2143
C2ClF5 17 93 730 22.91 22.94 20.1635 20.2244
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5528 57O. L. de LANGE AND J. PIERRUS
reproducible and they are not affected by the presenc
liquid in the aspirator. One can make an independent ch
by using a dry empty aspirator, filling it successively wi
various gases, and measuring the periodsTi of each. These
values correspond accurately and reproducibly to the in
cepts on theTi

2 axis in plots such as Figs. 6–9.@Note how
these intercepts increase as the gases become more
atomic: the bulk moduli are inversely proportional to the
intercepts, see Eq.~9!.# As a further check of the values o
Ki , we have repeated our measurements using a larger,
tic aspirator~total volume;56 l!: The values ofKi obtained
from the plots ofTi

2 versusVw are in good agreement wit
those in Table II, IV, and VI.

~6! The frictional force associated with motion of the ba
in the tube isF05b0v whereb05m/2t0 . Values ofb0 can
be obtained from our measurements oft0 . Consider, for ex-
ample, N2. From Fig. 12 we havet0'6 s from the intercept
obtained using measurements oftm andt0'12 s by extrapo-
lating the measurements oft i to zero frequency. These giv
b0'1.431023 N m21 s and b0'0.731023 N m21 s, re-
spectively. By comparison, the frictional force given by t
Stokes formula for motion of the ball in an infinite gas
F`5b`v whereb`56pah anda is the radius of the ball.
For our ball (a58 mm) in N2 (h'2031026 Pa s),b`'3
31026 N m21 s. Thus

FIG. 10. A test of Eq.~3! for monatomic gases: a plot of 1/tm

versusTm
27/6. The values oftm were obtained as described in th

text. The straight lines are least-mean-squares fits to the data
the intercepts and slopes are given in Table VII.

TABLE VI. As in Table II, but for polyatomic gases.

Gas

Ka /P Km /P Ki /P

Expt. Theory Expt. Theory Expt. Theory

CO2 1.31 1.31 1.27 1.30 0.92 1.00
N2O 1.27 1.29 1.24 1.28 0.88 0.99
CHF3 1.18 1.16 1.18 0.85 0.99
CCl2F2 1.12 1.09 1.12 0.83 0.98
SF6 1.08 1.06 1.08 0.80 0.99
C2ClF5 1.07 1.05 1.07 0.77 0.97
of
ck

r-

oly-

as-

F0 /F`'460 ~12!

using the measurements oftm , and

F0 /F`'230 ~13!

using the measurements oft i . An approximate calculation
of this ratio yields~see Appendix B!

F0 /F`'CA2a/e, ~14!

whereC is of order unity,e is the clearance between the tub
and the ball, and we have assumed thate!a. In our experi-
ment, e'0.005 mm and hence Eq.~14! gives F0 /F`'60.

nd

FIG. 11. As in Fig. 10 but for diatomic and polyatomic gase
The fit for C2ClF5 is very close to that for SF6, and has not been
drawn for clarity.

TABLE VII. Values of the slopes (D) and the intercepts (1/t0)
in Eq. ~3! obtained from the least-mean-squares fits in Figs. 10
11. The theoretical values ofD are calculated using Eq.~5!.

Gas

1/t0 (s21) D(1022 s1/6)

Expt. Expt. Theory

He 0.16 28 53
Ne 0.14 21 32
Ar 0.15 13 19
Kr 0.15 10 14
Xe 0.15 8.7 11
N2 0.16 10 14
CO2 0.14 4.4 7.9
N2O 0.16 7.3 7.3
CHF3 0.12 4.1 4.4
CCl2F2 0.12 2.9 2.1
SF6 0.12 1.8 1.5
C2ClF5 0.086 1.8 1.4
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57 5529OSCILLATIONS IN CONFINED GASES
We note that according to Eq.~B2!, 1/t0 is proportional to
the viscosity of the gas. For our gases, the viscosity va
between about 15mPa s and 30mPa s. However, our mea
surements of 1/t0 yield mostly quite similar values~Table

FIG. 12. ~a! Comparison oft i and tm for He on a plot of 1/t
versusTm

27/6. The data points for 1/tm and the straight-line fit are
the same as for He in Fig. 10. Values of the volume of gas
indicated on the upper horizontal axis.~b! As in ~a! but for N2. ~c!
As in ~a! but for N2O.
s

VII ! and are probably not sufficiently accurate to test for a
dependence on viscosity.

~7! Another measurable property of the tails is their a
plitudes. These amplitudes increase with the volume of
~see Figs. 1 and 2!. To quantify this, we have measured th
amplitude of the first oscillation in the tail (A1) as a function
of the volume.~A1 is the amplitude of the first peak, o
trough, of the first cycle with periodTi : for example, the
peaks are indicated with arrows in Fig. 2. Frequently ther
uncertainty in identifying this peak, or trough, among two
three neighboring candidates, and this produces an un
tainty of some 20% in the values ofA1 .! In our experiments
the amplitudes increase by about a factor 50 over the ra
of volumes used; see Fig. 13 where results for N2 are pre-
sented.

It may seem surprising that in our experiments isotherm
oscillations are more easily established as the volume of
is increased~Fig. 13!. After all, the distance scale for th
conduction of heat out of and into the gas increases with
volume. To discuss this point it is helpful to recall an ana
sis first presented by Stokes to determine whether so
waves in gases propagate under adiabatic or isothermal
ditions@8#. Stokes noted that the time available~the period of
oscillation T! for heat to be transported from a region
compression in the wave to neighboring regions of raref
tion scales inversely with the frequencyn:

T;1/n. ~15!

He therefore concluded that if the frequency is lowered,
oscillations should become isothermal. Conversely, at h
frequency, whereT becomes small, the oscillations shou
be adiabatic.

It was later recognized that, at least for an infinite gas, t
argument is incomplete and the conclusion is erroneous@8#.
It must be taken into account that the distanceR that the heat
has to be conducted is of the order of the wavelength,
hence it scales inversely with the frequency

e

FIG. 13. Plot of the amplitude of the first peak~or trough! A1 in
the tail vs the volume of gasV for N2.
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R;1/n. ~16!

The scalings~15! and ~16! represent two competing influ
ences: A detailed analysis shows that the oscillations
adiabatic in the low-frequency limit and they become is
thermal in the high-frequency limit@9#, which is the opposite
to Stokes’ conclusion. Here ‘‘low’’ and ‘‘high’’ are relative
to a characteristic frequency;109 Hz for gases under stan
dard conditions@9#.

In our experiments on oscillations in confined gases
situation is different: For a given volume of gas, the wav
length of the oscillation is much greater than the dimensi
of the container@1#. @For example, for 0.2 l of N2, Eq. ~1!
and Table III show thatn'6.3 Hz and hencel'52 m. If the
gas occupies a sphere, the radius is'3.631022 m and
hence~radius!/~wavelength! '731024.# Consequently, in-
stead of Eq.~16! one has for the distance heat has to
conducted

R;dimension of the container. ~17!

The appropriate distance to be used in Eq.~17! depends on
the geometry of the container. For example, for a sphere
the radius, and soR;V1/3. Also, according to Eq.~1! n
;V21/2. Hence

R;1/n2/3. ~18!
re
-

e
-
s

e

is

The result~18! applies also to conical containers of fixe
angle. According to Eq.~18!

R/l;n1/3

decreases as the frequency decreases~i.e., as the volume in-
creases!. For example, for 23 l of N2, n'0.6 Hz andR/l
'331024 compared with a ratio 731024 for 0.2 l of N2.
Thus in our experiments the ratioR/l is small at the smalles
volumes of gas, and it decreases further as the volume of
is increased. Perhaps it is this feature that makes it easie
detect the isothermal tail at large volumes.

It is interesting to note that for a long, thin cylinder E
~17! is

R;~diameter of the cylinder!,

which remains fixed if one increases the volume by incre
ing the length of the cylinder. In this case, one is deal
with just the scaling assumed by Stokes, namely, Eq.~15!.
One therefore expects that for such a cylinder isother
conditions would be established more easily than for
sphere or cone of the same volume.
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APPENDIX A

Table VIII below lists parameters used.

TABLE VIII. Values of parameters used in evaluating Eqs.~2!, ~4!, ~5!, ~6!, ~8!, and~10! in the text.

Gas
Cp

a

(J kg21 C21)
lb

(1022 W m21 C21)
kd

(1025 m2 s21) ga
Bf

(cm3 mol21) Zg

He 5196 14.7 18.1 1.63 12.0 1.0005
Ne 1030 4.78 6.1 1.64 11.3 1.0004
Ar 524.1 1.69 2.1 1.67 216.7 0.9994
Kr 251.2 0.91 1.1 1.67 252.0 0.9980
Xe 159.9 0.53 0.67 1.66 2136 0.9949
N2 1037 2.53 2.3 1.40 25.61 0.9998
CO2 858.1 1.53 1.1 1.31 2126 0.9952
N2O 878.2 1.48 1.0 1.30 2139 0.9948
CHF3 736.7 1.54c 0.79 1.19e 2186 0.9930
CCl2F2 607.0 0.94 0.32 1.14 2416 0.9835
SF6 666.6 1.37 0.36 1.09e 2287 0.9888
C2ClF5 686.5 1.05c 0.25 1.10 2717 0.9713

aMatheson Gas Data Book, 5th ed.~Matheson Gas Products, East Rutherford, New Jersey, 1971!.
bMatheson Gas Data Book, and scaled to the appropriate temperature~see Tables I, III, V! usingl;T1/2.
cR. W. Gallant,Physical Properties of Hydrocarbons~Gulf, Houston, 1968!, Vol. 1.
dCalculated usingk5l/rCr wherer(5M P/RT) is the density.
eCalculated usingg5MCp /(MCp2R).
fJ. H. Dymond and E. B. Smith,The Virial Coefficients of Gases~Clarendon Press, Oxford, 1969!. We have
extrapolated to 20 C.
gCalculated usingZ511B/V̄ and V̄5RT/P with the appropriate values ofT andP.
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APPENDIX B

The frictional force on a sphere of radiusa moving with
constant velocityv in an infinite fluid with viscosityh is
given by ~at low Reynolds number! Stokes’s formula

F`56pahv. ~B1!

We consider the problem of a sphere moving along the a
of a long cylinder of radiusac . Then Eq.~B1! is modified to

F056pahvD ~B2!

where the factorD is a function ofa/e with e5ac2a the
clearance between the cylinder and the sphere. For exam
for small values ofa/e

D'11
K

11e/a
, ~B3!

whereK'2 @10#. In our experimenta/e'1.63103 and we
are therefore concerned with the opposite limit

a/e@1, ~B4!

whereD→`. In this appendix we estimate the factorD in the
limit ~B4!.

We choose spherical coordinates attached to the sph
with origin at the center of the sphere as shown in Fig.
The clearance at the position of the strip shown isy5e

FIG. 14. Geometry for a sphere moving along the axis o
cylinder.
is

le,

re,
.

1a(12sinu). We start by approximating the velocity grad
ent of the gas at the surface of the sphere by the value f
plane moving parallel to a second plane, namely

v/y. ~B5!

With this approximation, the frictional force on the sphere
given by

F052pa2hvE
0

p sin2 udu

e1a~12sin u!
. ~B6!

In the limit ~B4!, most of the contribution to the above inte
gral comes from a small region on either side of the equa
~u5p/2!: We can therefore set sin2 u51 in the numerator of
this integral ~the error involved, for our value ofa/e, is
about 4%!. Thus we rewrite Eq.~B6! as

F0'2pahvE
0

p du

12~11e/a!21 sin u
. ~B7!

The integral in Eq.~B7! is standard@11#: evaluated in the
limit ~B4! it is approximatelypA2a/e. Thus the approxima-
tion ~B5! and the limit~B4! yield the estimate

D' 1
3 pA2a/e. ~B8!

~It is interesting to compare the dependence of the frictio
force one21/2 given in Eq.~B8! with the dependence one21

for a cylinder moving inside a coaxial cylinder@12#.!
Because the elements of the surface of the sphere are

parallel to the walls of the cylinder, a pressure gradient w
be generated in the gas between the sphere and the cyli
and this gradient will modify the velocity gradient~B5!. We
have not attempted a calculation of this effect for our pro
lem. In the absence of such a calculation it may be instr
tive to recall the theory of a slipper bearing. This beari
consists of a sliding block moving with constant speedv
over a stationary planar guide, and inclined at a small an
to the guide@13,14#. The direction of motion is such tha
fluid between the plates is being dragged from the wider
the narrower opening of the bearing. When the ratio of
width of the wider opening to the width of the narrow
opening is large, the velocity gradient of the fluid at t
narrower opening, and at the surface of the upper plate
approximately@13,14#

4v/y, ~B9!

independent of the angle of inclination. That is, an enhan
ment by a factor 4 of the value for parallel planes. Th
suggests that our estimate~B8! is a lower limit for the value
of D.

a



atu

t

5532 57O. L. de LANGE AND J. PIERRUS
@1# J. Pierrus and O. L. de Lange, Phys. Rev. E56, 2841~1997!.
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